

Podręcznik instalacji i konserwacji CTC Expansion EnergyFlex

CIC

Tłumaczeniem instrukcji oryginalnej. Zachować do wykorzystania w przyszłości. Przeczytaj uważnie przed użyciem.

Spis treści

1.	Dane	techniczne	5
	Dosta	awa obejmuje następujące elementy	5
	Akces	soria	5
2.	Energ	gyFlex	6
2.1	Opcje	7	
	2.1.1	Schematy ideowe produktu EnergyFlex	8
	2.1.2	EcoSol — przykładowo CTC EcoHeat i CTC Eco H/L	Zenith i255 9
3.	Struk	tura systemu	
3.1	Panel	słoneczny	
	3.1.1	Instalacja solarna 1	10
	3.1.2	Instalacja solarna 2	11
	3.1.3	Instalacja solarna 2b z wężownicą solarną	12
	3.1.4	Instalacja solarna 3	13
2.2	3.1.5 Decer	Opcja systemowe: ogrzewanie podłoża skalne	go14
3.Z २.२	Baser	ia sterow rozn	15 15
3.4	Obied	a CWU	
3.5	Wyka	z części	
4.	Insta	lacja	
4.1	Wyłąc	znik bezpieczeństwa	
4.2	Komu 18	inikacja między kartą rozszerzeń a produktem <u>c</u>	głównym
4.3	Wyso	kie napięcie	
	4.3.1	Pompa, panel solarny (G30, PWM) Wilo Stratos Para	18
	4.3.2	Pompa obiegowa, kolektor słoneczny (G30) Grundfos UPM3 Solar	_ 19
	4.3.3	Pompa zasilająca odwiert (G31, wł./wył.)	21
	4.3.4	Pompa pośredniego wymiennika ciepła paneli (G32) PWM	solarnych 21
	4.3.5	Pompa transferowa zbiornika (G46, wł./wył.)	21
	4.3.6	Basen	22
	4.3.7	Zawór 2 zbiorniki (Y30)	22
	4.3.8	Zawór podłoże skalne (Y31)	_ 22
4.4	Mont	aż czujnika	
	4.4.1	Połączenie czujnika (zabezpieczenie przed bar napięciem)	dzo niskim 24
	4.4.2	Czujniki zamontowane fabrycznie	25
	4.4.3	Poziom rezystancji czujników temperatury	_ 26

4.5	Schemat połączeń	
4.6	Tabela połączeń karty rozszerzeń A3	
5.	Szczegółowe opisy menu	
5.1	Nawigacja po ekranie dotykowym	
5.2	Ekran główny	
	Instalator	30
5.3	Definiuj	
	5.3.1 Def. Funkcja sterow rozn	30
	5.3.2 Def. Basen	31
	5.3.3 Def. panel Solar	31
	5.3.4 Def. CWU/obieg CWU	31
5.4	Ustawienia	
	5.4.1 Ustawienie, funkcja termostat rozn	32
	5.4.2 Ustawienia solarne	33
	5.4.3 Cyrkul CWU	36
	5.4.4 Ustawienia Basen	37
5.5	Dane pracy	
	5.5.1 Panele solarne	39
	5.5.2 Dane pracy, Funkcja termostat. rożn	40
	5.5.3 Dane pracy, Basen	41
	5.5.4 Dane pracy, CWU	41
5.6	Serwis	
	5.6.1 Test funkcji	42
5.7	Komunikaty alarmowe i rozwiązywanie problemó	w i środki
	zaradcze	

Software update

software.ctc.se

Więcej informacji na temat zaktualizowanych funkcji i pobierania najnowszego oprogramowania można znaleźć na stronie internetowej "software.ctc.se".

Podręcznik instalacji i konserwacji CTC Expansion EnergyFlex

Gratulujemy zakupu nowego urządzenia

CTC Expansion EnergyFlex

CTC Expansion EnergyFlex umożliwia sterowanie kolektorami słonecznymi lub ogrzewanie basenu, na przykład bezpośrednio z menu produktu CTC, zapewniając zintegrowany system sterowania.

Ustawianie

Umieść jednostkę sterującą w pomieszczeniu, na ścianie obok urządzenia. Jednostkę sterującą należy umiejscowić w taki sposób, aby można było wykonywać normalne procedury serwisowe. Przed urządzeniem powinno pozostawać co najmniej 0,5 m wolnego miejsca. Śruby mocujące pokrywę do urządzenia muszą być łatwo dostępne.

Instrukcje dotyczące bezpieczeństwa

Wykonanie instalacji musi zostać powierzone wykwalifikowanemu elektrykowi.

Dzieci w wieku od lat trzech wzwyż oraz osoby o ograniczonej sprawności fizycznej, sensorycznej lub umysłowej albo nieposiadające należytego doświadczenia lub wystarczającej wiedzy mogą korzystać z urządzenia tylko pod warunkiem, że pozostają pod nadzorem lub że zostały poinstruowane w zakresie bezpiecznej obsługi urządzenia i mają świadomość zagrożeń związanych z pracą urządzenia. Dzieciom nie wolno pozwalać na zabawę urządzeniem. Dzieci nie powinny czyścić urządzenia ani wykonywać przy nim innych czynności konserwacyjnych bez nadzoru.

Wymagania systemowe

Program karty graficznej musi być w wersji z 19.12.2014 r. lub nowszej.

CTC Expansion EnergyFlex uzupełnia następujące produkty o kilka dodatkowych funkcji (patrz rozdział "Projektowanie systemu").

CTC EcoHeat 400

CTC EcoZenith i250/i255

CTC GSi

CTC GS

- CTC EcoZenith i350/i360
- CTC EcoVent i350F/i360F

Ważne informacje dla właściciela nieruchomościUzupełnij poniższe informacje. Przydadzą się one w razie konieczności wykonania jakichkolwiek prac serwisowych.Produkt:Numer produkcyjny:Przedsiębiorstwo instalacyjne:Nr telefonu:Data:Imię i nazwisko:Przedsiębiorstwo elektroinstalacyjne:Nr telefonu:Data:Nazwa

Firma CTC AB udziela zawartych w niniejszym dokumencie informacji z zastrzeżeniem ewentualności błędów drukarskich oraz prawa do wprowadzania zmian w treści dokumentu.

1. Dane techniczne

Zasilanie	230V 1N~.
Maks. wielkość bezpiecznika	10 A
Całkowite maks. obciążenie CTC Expansion EnergyFlex	10 A
Maks. obciążenie na wyjściu przekaźnikowym	4 A
Parametry elektryczne zaworu 3-drożnego	230V 1N~.
Czujnik (zabezpieczenie przed bardzo niskim napięciem), NTC22k, °C/om	0/66k, 10/41.8k, 15/33.5k, 20/27.1k, 25/22k, 30/18k, 35/14.8k, 40/12.2k, 50/8.4k, 60/6.0k, 70/4.3k, 80/3.1k, 90/2.3k, 100/1.7k
Czujniki paneli słonecznych*, typ PT1000, °C/om	-10/960, 0/1000, 10/1039, 20/1077, 30/1116, 40/1155, 50/1194, 60/1232, 70/1271, 80/1309, 90/1347, 100/1385, 120/1461, 140/1535
Wymiary (szer. x wys. x głęb.)	379 x 279 x 131 mm

Dostawa obejmuje następujące elementy

- A 1 elektryczna skrzynka przyłączeniowa z kartą rozszerzeń
- B 2 czujniki NTC 22k
- C 2 kable komunikacyjne RJ-45
- D 1 podręcznik instalacji i konserwacji
- E 1 x przelotka kołnierzowa z otworami na kable

Akcesoria

Poniżej przedstawiono najważniejsze akcesoria dla uzupełniających kolektorów słonecznych i EnergyFlex.

Skrzynka przepływowa CTC

Zestaw instalacyjny GSi EHS

Zestaw EnergyFlex 400

Zestaw rur, wstępnie wygięte rury, połączenia i izolacja dla "przyłącza wyjściowego solarnego".

2. EnergyFlex

Urządzenie EnergyFlex współpracuje z pompami ciepła/modułami wewnętrznymi CTC EcoHeat 400, CTC EcoZenith i250/i255, CTC GSi, CTC GS, CTC EcoZenith i350/i360 i CTC EcoVent i350F/i360F.

EnergyFlex to kategoria opisująca unikalne opcje CTC zapewniające maksymalną elastyczność i proste łączenie różnych źródeł ciepła. Najpopularniejsze połączenie polega na sprzęgnięciu pompy ciepła z elektrycznym bojlerem.

Moduły wewnętrzne CTC EcoZenith i250/i255, CTC EcoZenith i350/i360 i EcoVent i350F/360F są wyposażone w:

- pompa ciepła CTC EcoPart (poma ciepła źródła gruntowego)
- pompa ciepła CTC EcoAir (pompa ciepła powietrze/woda)

Wszystkie pompy ciepła/moduły wewnętrzne EnergyFlex mają wbudowaną funkcjonalność, dzięki czemu można łatwo uzupełnić je o:

- Energia słoneczna
- Dodatkowe zbiorniki
- Piec z płaszczem wodnym
- Kotły na drewno, na pelet i gaz
- Basen

Pompy ciepła EnergyFlex •CTC EcoHeat 400 •CTC GS •CTC GSi

Moduły wewnętrzne EnergyFlex •CTC EcoZenith i250/i255 •CTC EcoZenith i350/i360 •CTC EcoVent i350F/i360F

(Urządzenie CTC EcoZenith i550/i555 jest fabrycznie wyposażoną kartę rozszerzeń)

Przyłączenie instalacji zewnętrznej może w istotnym stopniu wpłynąć na funkcjonowanie i osiągi modułu wewnętrznego, a tym samym przynieść niepożądane skutki w razie nieprawidłowego wykonania instalacji.

Jeśli nie masz pewności co do tego, jak wykonać połączenie, skontaktuj się z CTC, a otrzymasz wytyczne w tym zakresie.

Ilustracja przedstawia możliwe połączenia. Instalator mocuje zbiornik wyrównawczy, zawory bezpieczeństwa, odpowietrzniki itp. oraz dobiera wielkość instalacji.

2.1 Opcje systemowe

Elastyczność pompy ciepła / modułu wewnętrznego jest zoptymalizowana dzięki temu, że produkty zapewniają funkcjonalność dla maksymalnie 5 podstawowych systemów:

Instalacja solarna 1

Zasilanie z panelu słonecznego tylko do zbiornika H (CTC EcoHeat 400 / CTC EcoZenith i255) lub zbiornika ZŹC.

• Instalacja solarna 2 Zasilanie z panelu słonecznego do zbiornika buforowego CTC EcoTank +

CTC EcoHeat400 / CTC EcoZenith i255.

Instalacja solarna 3

Zasilanie z panelu słonecznego albo do objętości X, CTC EcoHeat 400 / CTC EcoZenith i255 lub zbiornika ZŹC.

Systemy energii słonecznej umożliwiają również regenerację podłoża skalnego lub gromadzenie energii dla dodatkowego zbiornika, z zastosowaniem wężownicy słonecznej lub bez niej.

Funkcja termostatu różnicowego

Funkcja termostatu różnicowego służy do przenoszenia ciepła ze zbiornika buforowego lub istniejącego kotła na drewno do zbiornika H lub zbiornika ZŹC. Funkcja termostatu różnicowego może zostać przyłączona do istniejącej płytki drukowanej pompy ciepła / modułu wewnętrznego, natomiast opcje instalacji solarnej 1, 2 i 3 oraz basenu wymagają uzupełnienia urządzenia o kartę rozszerzeń / sterowania solarnego CTC.

Basen Basen jest podłączony do obiegu grzewczego za pomocą zaworu 3-drogowego. Wymiennik ciepła powinien być zamontowany w celu rozdzielenia cieczy.

Ważne dla opalania drewnem

Zintegrowane sterowanie "Funkcją termostatu różnicowego" zapoczątkowuje zasilanie na przykład z istniejącej instalacji opalanej drewnem lub z kominka, gdy temperatura tego układu jest wyższa od panującej w zbiorniku głównym.

Należy pamiętać, że dobrym pomysłem może być zainstalowanie automatycznego urządzenia ładującego, zdolnego chronić instalację opalaną drewnem przed kondensacją itp.

Jeśli instalacja opalana drewnem potrzebuje więcej niż 223 l wody zgodnie z pojemnością urządzenia głównego ((CTC EcoHeat 400 lub CTC EcoZenith i255), trzeba ją rozbudować o zbiornik akumulacyjny.

Przykładowa instalacja opalana drewnem z grupą urządzeń ładujących.

Energyflex pozwala także na pobieranie energii na przykład do celów podgrzewania wody w basenie.

2.1.1 Schematy ideowe produktu EnergyFlex

Ilustracja przedstawia możliwe połączenia. Instalator mocuje zbiornik wyrównawczy, zawory bezpieczeństwa, odpowietrzniki itp. oraz dobiera wielkość instalacji.

2.1.2 EcoSol — przykładowo CTC EcoHeat i CTC EcoZenith i255 H/L

Urządzenia CTC EcoHeat i CTC EcoZenith i255 H/L mieszczą 223 litry wody oraz mają uwarstwioną płytę i wyjściowe przyłącze solarne.

Przyłącze wyjściowe solarne (3/4) jest elementem produktu EnergyFlex.

Akcesoryjny zestaw przewodu rurowego Energyflex 400 zainstalowany na zbiorniku H.

3. Struktura systemu

Tutaj przedstawiono różne systemy, które mogą zostać podłączone do produktu.

3.1 Panel słoneczny

Liczba paneli słonecznych, które można podłączyć, zależy od ilości wody w produkcie/zbiornikach, do których panele słoneczne mają być podłączone. Te schematy przedstawiają tylko podstawowe zarysy, więc dokładne rozmieszczenie w rzeczywistej instalacji może być odmienne. System należy uzupełnić w odpowiednich miejscach o odpowietrzniki, zbiorniki rozprężne i zawory bezpieczeństwa itp. Lista elementów znajduje się na końcu niniejszego rozdziału.

W przypadku wybrania funkcji "Regeneracja podłoża skalnego" można ustawić liczbę stopni, o jaką panel słoneczny powinien być cieplejszy od czynnika pośredniego, aby rozpoczęło się zasilanie. Jeśli panel ładuje lub może naładować zbiornik, naładowanie zbiornika jest priorytetowe.

B3

G30

Y11

W odniesieniu do ustawień menu patrz sekcja "Instalator/Ustawienia/Panele solarne".

3.1.1 Instalacja solarna 1

Konstrukcja systemu z ogrzewaniem solarnym tylko dla zbiornika H (CTC EcoHeat 400 / CTC EcoZenith i255) lub zbiornika ZŹC (inne modele EnergyFlex).

Warunki ładowania (główne warunki, ustawienia fabryczne)

Zasilanie rozpoczyna się, gdy temperatura na czujniku panelu solarnego (B31) jest o 7°C wyższa niż na czujniku zbiornika H (B6) lub czujniku zbiornika ZŹC (B47).

Zasilanie zatrzymuje się, gdy różnica między czujnikiem panelu solarnego a czujnikiem zbiornika wynosi 3°C .

Ustaw różnicę temperatury, przy której rozpocznie się zasilanie podłoża skalnego. Aby zasilanie się rozpoczęło, panel słoneczny musi być o właśnie tyle stopni cieplejszy od solanki w odwiercie. Jeśli panel ładuje lub może naładować zbiornik, naładowanie zbiornika jest priorytetowe.

Ilustracja przedstawia możliwe połączenia. Instalator mocuje zbiornik wyrównawczy, zawory bezpieczeństwa, odpowietrzniki itp. oraz dobiera wielkość instalacji.

3.1.2 Instalacja solarna 2

Konstrukcja systemu ze zbiornikiem H (CTC EcoHeat 400/CTC EcoZenith i255) i CTC EcoTank (zbiornik buforowy). Nie jest możliwe podłączenie do tego systemu zbiornika ZŹC.

Ten system umożliwia zastosowanie większej powierzchni kolektora solarnego, ponieważ przenosi większą ilość wody i energia może być przechowywana w podłożu skalnym.

Warunki ładowania (główne warunki, ustawienia fabryczne)

Zasilanie rozpoczyna się, gdy temperatura na czujniku panelu solarnego (B31) jest o 7°C wyższa niż na czujniku zbiornika EcoTank (B42).

Zasilanie zatrzymuje się, gdy różnica między czujnikiem panelu solarnego a czujnikiem zbiornika EcoTank wynosi 3°C .

Zasilanie zbiornika H z CTC EcoTank porównuje wartości na czujniku CTC EcoTank (B41) i czujniku zbiornika H (B6).

Ilustracja przedstawia możliwe połączenia. Instalator mocuje zbiornik wyrównawczy, zawory bezpieczeństwa, odpowietrzniki itp. oraz dobiera wielkość instalacji.

B31

3.1.3 Instalacja solarna 2b z wężownicą solarną

Konstrukcja systemu ze zbiornikiem H (CTC EcoHeat 400/CTC EcoZenith i255) i CTC EcoTank (zbiornik buforowy). Nie jest możliwe podłączenie do tego systemu zbiornika ZŹC.

Ten system umożliwia zastosowanie kolektora solarnego o większej powierzchni, ponieważ zawiera większą ilość wody i energia może być przechowywana w podłożu skalnym.

Warunki ładowania (główne warunki, ustawienia fabryczne)

Zasilanie rozpoczyna się, gdy temperatura na czujniku panelu solarnego (B31) jest o 7°C wyższa niż na czujniku zbiornika EcoTank (B42).

Zasilanie zatrzymuje się, gdy różnica między czujnikiem panelu solarnego a czujnikiem zbiornika EcoTank wynosi 3°C .

Zasilanie zbiornika H z CTC EcoTank porównuje wartości na czujniku CTC EcoTank (B41) i czujniku zbiornika H (B6).

B31

Ilustracja przedstawia możliwe połączenia. Instalator mocuje zbiornik wyrównawczy, zawory bezpieczeństwa, odpowietrzniki itp. oraz dobiera wielkość instalacji.

3.1.4 Instalacja solarna 3

Zbiornik H (CTC EcoHeat 400/CTC EcoZenith i255) lub zbiornik ZŹC (dla innych modeli EnergyFlex) ze zbiornikiem o dodatkowej objętości (o objętości X, który może być zbiornikiem/basenem akumulatora itp.). Ten system umożliwia zastosowanie kolektora solarnego o bardzo dużej powierzchni, ponieważ zawiera większą ilość wody.

Wybierz tę opcję, jeśli chcesz nadać priorytet zbiornikowi H/ZŹC lub objętości X (03).

Jeżeli objętość X jest podłączonym basenem, chlorowana woda w nim powinna być oddzielona za pomocą wymiennika basenowego zamontowanego między zaworem 3-drogowym Y30 a basenem. Czujniki objętości X (B41 i B42) należy następnie umieścić w basenie.

Warunki ładowania (główne warunki, ustawienia fabryczne)

Zasilanie rozpoczyna się, gdy temperatura na czujniku panelu solarnego (B31) jest o 7°C wyższa niż na czujniku EcoTank (B42), na czujniku zbiornika H (B6) lub czujniku zbiornika ZŹC (B47).

Zasilanie zatrzymuje się, gdy różnica między czujnikiem panelu solarnego a czujnikiem zbiornika EcoTank wynosi 3°C .

Wymiana będzie się odbywać, gdy priorytetowy zbiornik osiągnie temperaturę zasilania.

Ilustracja przedstawia możliwe połączenia. Instalator mocuje zbiornik wyrównawczy, zawory bezpieczeństwa, odpowietrzniki itp. oraz dobiera wielkość instalacji.

B31

3.1.5 Opcja systemowe: ogrzewanie podłoża skalnego

Zasilanie podłoża skalnego można uaktywnić w instalacjach solarnych 1, 2 i 3.

Zobacz poniższe rysunki dotyczące instalacji rury zaworu 3-drogowego Y31.

- 1. Przepływ z kolektora solarnego
- 2. Przepływ do zbiornika
- 3. Przepływ do odwiertu

Zawór 3-drogowy do ogrzewania podłoża skalnego musi być zainstalowany przy normalnym przepływie do zbiornika (2). Zawór jest wtedy bez zasilania (rozwierny).

Gdy przekaźnik otrzyma zasilanie, zawór przełączy przepływ do podłoża skalnego (3), a także uruchomi pompę czynnika pośredniego (G31).

W odniesieniu do ustawień menu "Regeneracja podłoża skalnego", patrz sekcja "Instalator/Ustawienia/Panele solarne/Regeneracja podłoża skalnego".

Przykład zasilania podłoża skalnego dla "Instalacji solarnej 1". Zasilanie podłoża skalnego można również uaktywnić w instalacjach solarnych 2 i 3.

Ilustracja przedstawia możliwe połączenia. Instalator mocuje zbiornik wyrównawczy, zawory bezpieczeństwa, odpowietrzniki itp. oraz dobiera wielkość instalacji.

3.2 Basen

Basen można podłączyć do instalacji za pośrednictwem zaworu 3-drogowego (Y50). Wymiennik ciepła powinien być zamontowany w celu rozdzielenia cieczy.

Gdy basen jest ogrzewany, zawór 3-drogowy (Y50) zmienia kierunek i uruchomiona zostaje pompa basenowa (G51).

3.3 Funkcja sterow rozn

Funkcja termostatu różnicowego służy do przenoszenia ciepła ze zbiornika buforowego lub istniejącego kotła na drewno do zbiornika H lub zbiornika ZŹC.

Funkcja porównuje temperatury w zbiornikach. Gdy temperatura w zbiorniku buforowym jest wyższa, rozpoczynane jest zasilanie zbiornika głównego / zbiornika ZŹC.

UWAGA: W odniesieniu do pewnych źródeł ciepła, takich jak bojlery na paliwo stałe, zalecane są automatyczne urządzenia ładujące, z myślą między innymi o przeciwdziałaniu kondensacji w skrzyni paleniskowej.

Funkcja termostatu różnicowego nie może być używana z "Instalacją solarną 2" (system z CTC EcoTank). Jest to spowodowane tym, że wykorzystywana jest ta sama pompa obiegowa (G46).

3.4 Obieg CWU

Funkcja ta umożliwia obieg CWU w rurach między kranami a zbiornikiem CWU, zapewniając gorącą CWU po otwarciu kranów.

Obieg CWU jest podłączony, jak pokazano na schemacie.

Pompa obiegowa (G40) służy do cyrkulacji gorącej wody.

Ilustracja przedstawia możliwe połączenia. Instalator mocuje zbiornik wyrównawczy, zawory bezpieczeństwa, odpowietrzniki itp. oraz dobiera wielkość instalacji.

СТС

3.5 Wykaz części

Oznaczenie	Oznaczenie	Komentarz
01	Zbiornik H	Zbiornik główny (EcoHeat / EcoZenith i255)
02	EcoTank	Zbiornik buforowy (CTC EcoTank lub podobny).
03	Objętość X	Zbiornik o dodatkowej objętości (lub basen)
04	Pompa ciepła	Moduł chłodzący w CTC EcoHeat, GS 600, GSi 600 lub CTC EcoPart.
05	Zbiornik dla funkcji termostatu różnicowego	Objętość wody w systemie spalania drewna, z której pobierana jest energia za pomoca funkcji termostatu różnicowego.
B5	Górny czujnik zbiornika M	Mierzy temperaturę w górnej części urządzenia EcoHeat/ EcoZenith (fabrycznie zamontowany).
B6	Dolny czujnik zbiornika M	Mierzy temperaturę w dolnej części urządzenia EcoHeat/ EcoZenith (fabrycznie zamontowany).
B23	Czujnik czynnika pośredniego	Mierzy temperaturę czynnika pośredniego w pompie ciepła (fabrycznie zamontowany)
B30	Czujnik na wlocie panelu solarnego	Mierzy temperaturę powrotu do panelu solarnego, zamontowany w karcie rozszerzeń.
B31	Czujnik na wylocie panelu solarnego	Mierzy temperaturę na wylocie panelu solarnego, zamontowany w karcie rozszerzeń.
B41	Górny czujnik objętości X / EcoTank	Mierzy temperaturę w górnej części objętości X/EcoTank, zamontowany w karcie rozszerzeń.
B42	Dolny czujnik objętości X / EcoTank	Mierzy temperaturę w dolnej części objętości X/EcoTank, zamontowany w karcie rozszerzeń.
B46	Czujnik dla funkcji termostatu różnicowego	Zamontowany w pompie ciepła / module wewnętrznym.
B47	Czujnik zewnętrznego źródła ciepła (ZŹC)	Mierzy temperaturę w zbiorniku ZŹC.
B50	Czujnik basen	Zamontowany w karcie rozszerzeń.
F2	Wymiennik ciepła ogrzewania solarnego / zbiornika	Wymiennik ciepła dla zasilania zbiornika.
F3	Wymiennik ciepła ogrzewania solarnego / czynnika pośredniego	Wymiennik ciepła dla zasilania czynnika pośredniego.
G30	Pompa obiegowa panelu solarnego	Pompa z wymiennika do panelu solarnego, zamontowana w karcie rozszerzeń
G31	Pompa obiegowa zasilania podłoża skalnego	Pompa czynnika pośredniego do wymiennika, zamontowana w karcie rozszerzeń.
G32	Pompa obiegowa wymiennika ciepła	Wykonuje pompowanie ze zbiornika do wymiennika, zamontowana w karcie rozszerzeń.
G40	Pompa obiegowa CWU	Funkcja obiegu ciepłej wody podczas obiegu CWU.
G46	Pompa transferowa zbiornika	Wykonuje pompowanie między zbiornikiem H / zbiornikiem ZŹC i EcoTank / zbiornikiem dla funkcji termostatu różnicowego.
G50/G51	Pompy obiegowe, basen	
G98/G99	Zbiornik wyrównawczy	
Y11	Zawór zwrotny	
Y30	Zawór 2 zbiorników	Zawór rozdzielczy, zasilanie zbiornika M lub objętości, zamontowany w karcie rozszerzeń.
Y31	Zawór 3-drogowy czynnika pośredniego	Zawór rozdzielczy, zasilanie czynnika pośredniego lub zasilanie zbiornika, zamontowany w karcie rozszerzeń.
Y50	Zawór 3-drogowy, basen	

4. Instalacja

Instalacja i podłączenie muszą być wykonane przez wykwalifikowanego elektryka. Całe okablowanie musi zostać zainstalowane w sposób zgodny z obowiązującymi przepisami.

Otwórz jednostkę sterującą, wykręcając cztery śruby i przesuwając plastikową pokrywę na bok. Zamontuj zasilacz, pompy obiegowe, zawory i czujniki.

UWAGA: Nie dotykaj elementów płytki drukowanej. Płytka drukowana może ulec uszkodzeniu z powodu wyładowania statycznego.

4.1 Wyłącznik bezpieczeństwa

Przed instalacją znaleźć się powinien dwubiegunowy wyłącznik bezpieczeństwa zgodny z wymaganiami dla kategorii III przepięć, umożliwiający niezawodne odłączanie jej od wszystkich źródeł zasilania prądem elektrycznym.

4.2 Komunikacja między kartą rozszerzeń a produktem głównym

Jako kabla komunikacyjnego należy użyć kabla RJ-45. Musi on być zamontowany między kartą rozszerzeń / sterowaniem solarnym a kartami przekaźnikowymi i graficznymi w produkcie głównym, z którego wykonywane jest sterowanie. Wymontuj istniejący kabel RJ-45 znajdujący się między przekaźnikiem a kartami graficznymi i podłącz dostarczony kabel RJ-45.

Połączenie kabla komunikacyjnego (patrz zdjęcie):

- Karta przekaźnika A2 -> Karta rozszerzeń A3
- Karta rozszerzeń A3 -> Karta graficzna A1

4.3 Wysokie napięcie

Zasilanie:

230 V 1N~.

Maks. wielkość bezpiecznika (bezpiecznik grupowy) 10 A. Podłączone do bloku zacisków oznaczonego L1, N, PE

4.3.1 Pompa, panel solarny (G30, PWM) Wilo Stratos Para

230 V 1N~

Pompa obiegowa G30 jest zasilana osobno (nie z tego urządzenia).

Pompy solarne PWM (G30 i G32) model WILO Stratos PARA różnią się od innych pomp PWM. Jeżeli sygnał sterujący PWM zostanie przerwany, pompy solarne zatrzymują się, natomiast inne pompy PWM pracują na 100% mocy.

Sygnał sterujący PWM jest podłączony do następujących bloków zacisków:

Karta rozszerzeń X5:

Zwróć uwagę na kolory przewodów!

PWM+:	biały	Blok zaciskowy X5: 1
GND:	brązowy	Blok zaciskowy X5: 2

Sprawdź funkcję w drodze pracy próbnej pompy z menu "Instalator/Serwis/ Test funkcji/Solarna" układu sterowania.

Karta rozszerzeń A3

4.3.2 Pompa obiegowa, kolektor słoneczny (G30) Grundfos UPM3 Solar

230 V 1N~

Pompę obiegową podłącza się do następujących bloków zacisków: (G30) Pompa obiegowa, karta rozszerzeń X5: Zwróć uwagę na kolory przewodów!

PWM+:	brązowy	X5 złącze 1
Masa:	niebieski	X5 złącze 2

CUURION CUURIO

Sprawdź funkcję w drodze pracy próbnej pompy z menu "Instalator/Serwis/Test
funkcji/Solarna" układu sterowania.

Pompa musi być ustawiona na profil C PWM (ustawienie domyślne).

1. Naciśnij przez chwilę strzałkę pompy obiegowej, aby pokazać tryb pracy, w którym ustawiona jest pompa. Po 2 sekundach zostanie ponownie wyświetlony ekran danych eksploatacyjnych.

2. Naciśnięcie strzałki pompy obiegowej przez 2 sekundy spowoduje miganie diod LED. Następnie można zmienić ustawienie trybu. Naciskaj wielokrotnie, aż zacznie migać żądany tryb. Po 10 sekundach zostanie ponownie wyświetlony ekran danych eksploatacyjnych.

Dane pracy:

*	Gotowość (miganie)
	0% – P1 – 25%
	25% – P2 – 50%
	50% – P3 – 75%
	75% – P4 – 100%

Wybieranie ustawienia trybu

Tryb sterowania	Tryb	xx-75	xx-105	xx-145	
Krzywa stała		4,5 m	4,5 m	6,5 m	
Krzywa stała		4,5 m	5,5 m	8,5 m	
Krzywa stała		6,5 m	8,5 m	10,5 m	
Krzywa stała		7,5 m	10,5 m	14,5 m	
Trvb					
sterowania	Tryb	xx-75	xx-105	xx-145	
sterowania Profil PWM C	Тгур	xx-75	xx-105	xx-145	
sterowania Profil PWM C Profil PWM C	Тгув	xx-75	xx-105	xx-145	
sterowania Profil PWM C Profil PWM C Profil PWM C	Tryb	xx-75	xx-105	xx-145	

Informacje o alarmie:

Zablok
Niskie napięcie zasilania
Usterka elektryczna

4.3.3 Pompa zasilająca odwiert (G31, wł./wył.)

230 V 1N~.

Pompa obiegowa G31 jest podłączona do następujących bloków zacisków:

Karta rozszerzeń X6

Zwróć uwagę na kolory przewodów!

Faza:	brązowy	Blok zaciskowy X6:8
Zero:	niebieski	Blok zaciskowy X6:11
Masa:	żółty/zielony	Blok zaciskowy X6:10

Sprawdź funkcję w drodze pracy próbnej pompy z menu "Instalator/Serwis/ Test funkcji/Solarna" układu sterowania.

4.3.4 Pompa pośredniego wymiennika ciepła paneli solarnych (G32) PWM

230 V 1N~.

Pompa G32 jest zasilana osobno (nie z tego urządzenia). Sygnał sterujący PWM jest podłączony do następujących bloków zacisków:

Karta rozszerzeń X5:

Zwróć uwagę na kolory przewodów!

PWM+:	biały	Blok zaciskowy X5:3
GND:	brazowy	Blok zaciskowy X5:4

Sprawdź funkcję w drodze pracy próbnej pompy z menu "Instalator/Serwis/ Test funkcji/Solarna" układu sterowania.

4.3.5 Pompa transferowa zbiornika (G46, wł./wył.)

230 V 1N~.

Pompa obiegowa G46 w urządzeniach EcoZenith i255, EcoHeat 400, GS 600 i GSi 600 musi być podłączona do kart przekaźników (patrz schemat połączeń dla każdego produktu).

Pompa obiegowa G46 w urządzeniu EcoZenith i360 musi być podłączona do karty rozszerzeń.

Zwróć uwagę na kolory przewodów!

Faza:	brązowy	Blok zacisków A:11(EcoZenith i255, GS 600, GSi 600) Blok zacisków A:12 (EcoHeat 400)
Zero:	niebieski	
Masa:	żółty/zielony	

Sprawdź funkcję w drodze pracy próbnej pompy z menu "Instalator/Serwis/ Test funkcji/Funkcja termostatu różnicowego" lub "Solarna" układu sterowania.

4.3.6 Basen

4.3.6.1 Pompy obiegowe, basen (G50) i (G51)

230 V 1N~.

Obie pompy (G50) i (G51) muszą być podłączone do następujących bloków zacisków na karcie rozszerzeń X7:

Faza:	brązowy	Blok zacisków X7:33
Zero:	niebieski	Blok zacisków X7:35
Masa:	żółty/zielony	Blok zacisków X7:34

Złącze 33 musi być podłączane do zewnętrznej skrzynki przyłączeniowej, która rozprowadza napięcie do pompy zasilającej (G50) i pompy obiegowej (G51).

4.3.6.2 Zawór 3-drogowy (Y50)

Napięcie sterujące	czarny	Blok zaciskowy X7:24
Faza	brązowy	Blok zaciskowy X7:25
Zero	niebieski	Blok zaciskowy X7:26

Sprawdź działanie w drodze pracy próbnej pompy, z poziomu ekranu "Instalator/Serwis/Test funkcji".

4.3.7 Zawór 2 zbiorniki (Y30)

230 V 1N~.

Zawór rozdzielczy Y30 jest podłączony do następujących bloków zacisków:

Karta rozszerzeń (X6):

czarny	Blok zaciskowy X6:4
brązowy	Blok zaciskowy X6:5
niebieski	Blok zaciskowy X6:7
	czarny brązowy niebieski

Sprawdź funkcję w drodze pracy próbnej zaworu z menu "Serwis/Test funkcji/Solarna" układu sterowania.

4.3.8 Zawór podłoże skalne (Y31)

230 V 1N~.

Zawór rozdzielczy G31 jest podłączony do pompy G31 do następujących bloków zacisków:

Karta rozszerzeń (X6):

Napięcie sterujące:	czarny	Blok zaciskowy X6:8
Faza:	brązowy	Blok zaciskowy X6:9
Zero:	niebieski	Blok zaciskowy X6:11

Zawór 582581001 (patrz zdjęcie) może być podłączony tylko z wyjściem przekaźnikowym, złączem X6 8 i neutralnym złączem X6 11.

Sprawdź funkcję w drodze pracy próbnej zaworu z menu "Serwis/Test funkcji" układu sterowania.

582581001 22 3/4"

W zależności od podłączanego systemu wymaganych jest 3–6 czujników. Stosowane są czujniki typów PT1000 i NTC NTC22k. Niektóre czujniki są podłączone fabrycznie. Podłącz każdy czujnik do odpowiedniego bloku zacisków w jednostce sterującej. Upewnij się, że czujniki są zamontowane w odpowiednim miejscu i z dobrym stykiem. Nieprawidłowe zamontowanie czujników powoduje, że system nie działa w przewidziany sposób.

Podczas montażu czujników należy pamiętać o kilku rzeczach:

- Czujniki należy montować z dobrym stykiem. Jeśli to możliwe, należy użyć pewnego rodzaju pasty termoprzewodzącej na powierzchni styku.
- Aby uzyskać optymalną funkcjonalność, czujniki muszą być izolowane.
- Dla niektórych czujniki konieczne będzie zastosowanie przedłużenia.
 W zależności od długości przedłużacza należy stosować następujące typy przewodów:

Do 15 m → 2 x 0,5 m².

Do 50 m → 2 x 0,75m².

 Należy unikać pozycjonowania przewodów czujników obok przewodów wysokiego napięcia. W kolektorze solarnym należy używać wyłącznie czujników odpowiednich dla temperatury 180°C. (Oznaczenie kolorem czerwonym)

4.4.1 Połączenie czujnika (zabezpieczenie przed bardzo niskim napięciem)

Czujniki, które stanowią część każdego rozwiązania systemu, powinny być zamontowane w płytce drukowanej / bloku zacisków w następujący sposób: Wszystkie czujniki są czujnikami temperatury.

Czujnik na wlocie panelu solarnego (B30, PT1000)

Mierzy temperaturę powrotu do panelu solarnego Zamontowany na miedzianych rurociągach na linii powrotnej do kolektorów solarnych. Zabezpieczony odporną na ciepło opaską zaciskową i pastą termoprzewodzącą. Podłączony do karty rozszerzeń X1:

Blok zacisków X1: 3

Blok zacisków X1:4

Czujnik na wylocie panelu solarnego (B31, PT1000)

180°C Oznaczenie kolorem czerwonym:

Mierzy temperaturę na wylocie kolektora solarnego. Ważne, aby ten czujnik był zamontowany w taki sposób, aby wykrywał temperaturę panelu nawet wtedy, gdy płyn nie krąży. Czujnik ten jest zamontowany w kolektorze solarnym. Dokładne umieszczenie można znaleźć w instrukcji obsługi panelu solarnego.

W przypadku trudności z umieszczeniem czujnika w kolektorze solarnym należy uaktywnić funkcję "Test czujnika".

Podłączony do karty rozszerzeń X1:

Blok zacisków X1: 1

Blok zacisków X1: 2

Czujnik objętości X / zbiornika buforowego / EcoTank, górny (B41, NTC22k)

Mierzy temperaturę w górnej części zbiornika. Zamontowany w górnej części zbiornika akumulacyjnego lub w basenie.

Podłączony do karty rozszerzeń X2:

Blok zacisków X2 9

Blok zacisków X2 10

Czujnik objętości X / zbiornika buforowego / EcoTank, dolny (B42, NTC22k)

Mierzy temperaturę w dolnej części zbiornika. Zamontowany w dolnej części zbiornika akumulacyjnego lub w basenie.

Podłączony do karty rozszerzeń X2:

Blok zacisków X2 11

Blok zacisków X2 12

W kolektorze solarnym należy używać wyłącznie czujników odpowiednich dla temperatury 180°C. (Oznaczenie kolorem czerwonym)

Czujnik funkcji termostatu różnicowego, dolny (B46, NTC22k)

Mierzy temperaturę w dolnej części EcoTank.

Zamontowany w dolnej części EcoTank.

Podłączony do urządzenia EcoHeat 400 / EcoZenith i255.

Blok zacisków G65

Blok zacisków G66

Czujnik zbiornika zewnętrznego źródła ciepła (ZŹC) (B47, NTC22k)

Mierzy temperaturę w zbiorniku ZŹC.

Do montażu w zbiorniku ZŹC.

Podłączony do karty przekaźnika A2.

Blok zacisków G67

Blok zacisków G68

Czujnik, basen (B50, NTC22k)

Mierzy temperaturę wody w basenie. Umieszczenie: w wodzie w basenie.

Podłączony do karty rozszerzeń X3:

Blok zacisków X3:15

Blok zacisków X3:16

4.4.2 Czujniki zamontowane fabrycznie

Górny czujnik zbiornika H / czujnik zbiornika CWU (B5, NTC22k)

- Górny czujnik zbiornika H (CTC EcoHeat i EcoZenith i255): Mierzy temperaturę w górnym zbiorniku.
- Czujnik zbiornika CWU (CTC GS 600 / GSi 600 / EcoZenith i360): Mierzy temperaturę w zbiorniku CWU.

Dolny czujnik zbiornika H (B6, NTC22k)

Mierzy temperaturę w dolnej części CTC EcoHeat / EcoZenith i255.

Czujnik temperatury czynnika pośredniego (B23, NTC22k)

Mierzy temperaturę czynnika pośredniego w pompie ciepła. Fabrycznie zamontowany w EcoHeat/EcoPart.

4.4.3 Poziom rezystancji czujników temperatury

Poniżej opisano rezystancję, jaką muszą charakteryzować się czujniki w różnych temperaturach. Tabela może być przydatna do identyfikowania niesprawnego czujnika podczas rozwiązywania problemów.

PT1000

Temperatura °C	Rezystancja Ω
-10	960
0	1000
10	1039
20	1077
30	1116
40	1155
50	1194
60	1232
70	1271
80	1309
90	1347
100	1385
120	1461
140	1535

585742308 0210120 394:-NTC 22 kΩ

Temperatura °C	NTC 22 k Rezystancja Ω	
130	800	
125	906	
120	1027	
115	1167	
110	1330	
105	1522	
100	1746	
95	2010	
90	2320	
85	2690	
80	3130	
75	3650	
70	4280	
65	5045	
60	5960	
55	7080	
50	8450	
45	10130	
40	12200	
35	14770	
30	18000	
25	22000	
20	27100	
15	33540	
10	41800	
5	52400	
0	66200	
-5	84750	
-10	108000	
-15	139000	
-20	181000	
-25	238000	

4.6 Tabela połączeń karty rozszerzeń A3

W tej tabeli przedstawiono połączenia podzespołów karty rozszerzeń A3 urządzenia (Patrz również schemat połączeń karty rozszerzeń).

	,							
	Oznaczenie	Blok zacisków / kabel			Oznaczenie		Blok zacisków / kabel	
A1	Wyświetlacz	COM2	*	E1	Przekaźnik, kocioł zewnętrzny	X6:16	PE	
A2	Karta główna/przekaźnikowa	COM1	*	E1	Przekaźnik, kocioł zewnętrzny	X6:17	N	
B9	Czujnik kocioł zewnętrzny	X3:13	*	G46	Pompa zasilająca	X7:18	L	
B9	Czujnik kocioł zewnętrzny	X3:14	*	G46	Pompa zasilająca	X7:20	N	
B31	Czujnik panele słoneczne wylot	X1:1	*	G46	Pompa zasilająca	X7:22	PE	
B31	Czujnik panele słoneczne wylot	X1:2	*	G50	Pompa obiegowa, ogrzewanie	X7:33	L	
B30	Czujnik panele słoneczne wlot	X1:3	*		basenowe			
B30	Czujnik panele słoneczne wlot	X1:4	*	G50	Pompa obiegowa, ogrzewanie	X7:34	PE	
B41	Czujnik, zewnętrzny zbiornik buforowy górny	X2:9	*	G50	Pompa obiegowa, ogrzewanie	X7:35	N	
B41	Czujnik, zewnętrzny zbiornik buforowy górny	X2:10	*	G51	Pompa obiegowa, ogrzewanie	X7:33	L	
B42	Czujnik, zewnętrzny zbiornik buforowy dolny	X2:11	*	G51	Pompa obiegowa, ogrzewanie	X7:34	PE	
B42	Czujnik, zewnętrzny zbiornik buforowy dolny	X2:12	*	G51	Pompa obiegowa, ogrzewanie	X7:35	N	
B46	Czujnik, termostat różnicowy	X3:17	*	V20		XC.A	Otru	
B46	Czujnik, termostat różnicowy	X3:18	*	150	zewnętrzny zbiornik buforowy		Otw	
B47	Czujnik, zewnętrzne źródło ciepła, zbiornik	X3:13	*	Y30	Zawór rozdzielczy, ciepło słoneczne, zewnętrzny zbiornik buforowy	X6:5	Zamknięty	
B47	Czujnik, zewnętrzne źródło ciepła, zbiornik	X3:14	*	Y30	Zawór rozdzielczy, ciepło słoneczne, zewnętrzny zbiornik buforowy	X6:7	N	
B50	Czujnik basen	X3:15	*	Y31	Zawór rozdzielczy czynnika	X6:8	Otw	
B50	Czujnik basen	X3:16	*		pośredniego, ciepło słoneczne			
G30	Pompa obiegowa, panel słoneczny	X5:1	PWM	Y31	Zawór rozdzielczy czynnika	X6:9	Zamknięty	
G30	Pompa obiegowa, panel słoneczny	X5:2	Masa:	104				
G32	Pompa, płytowy wymiennik ciepła – energia słoneczna	X5:3	PWM	¥31	Zawor rozdzielczy czynnika pośredniego, ciepło słoneczne	X6:11	N	
G32	Pompa, płytowy wymiennik ciepła – energia słoneczna	X5:4	Masa:	Y41	Zawór mieszający, zewnętrzne źródło ciepła	X6:12	Otw	
G40	Pompa obiegowa CWU	X6:1	L	Y41	Zawór mieszający, zewnętrzne	X6:13	Zamknięty	
G40	Pompa obiegowa CWU	X6:2	PE	V/1		X6.14	N	
G40	Pompa obiegowa CWU	X6:3	N	141	źródło ciepła	70.14		
G31	Pompa, doładowanie odwiertu	X6:8	L	Y42	Zawór mieszający, zewnętrzne	X6:12	Otw	
G31	Pompa, doładowanie odwiertu	X6:10	PE		źródło ciepła			
G31	Pompa, doładowanie odwiertu	X6:11	N	Y42	Zawór mieszający, zewnętrzne źródło ciepła	X6:13	Zamknięty	
E1	Przekaźnik, kocioł zewnętrzny	X6:15	L	Y42	Zawór mieszający, zewnętrzne	X6:14	N	
				Y50	Zawór 3-drogowy, basen	X7:24	Przekaźnik	

Y50

Y50

* przewód można podłączyć niezależnie od bloku zacisków danego podzespołu.

Zawór 3-drogowy, basen

Zawór 3-drogowy, basen

X7:25

X7:26

L

Ν

5. Szczegółowe opisy menu

UWAGA: W tym rozdziale opisano wyświetlane menu towarzyszące karcie rozszerzeń EnergyFlex. Dotyczy produktów głównych wysyłanych, począwszy od 14.09.2020.

Więcej informacji na temat projektu systemu menu można znaleźć w "Podręczniku instalacji i konserwacji" danego produktu głównego.

5.1 Nawigacja po ekranie dotykowym

5.2 Ekran główny

Ten ekran jest ekranem głównym interfejsu. Widnieje na nim przegląd bieżących danych pracy.

System powraca na ten ekran po upływie 10 minut bez naciśnięcia któregokolwiek przycisku. Z poziomu tego ekranu można uzyskiwać dostęp do wszystkich pozostałych ekranów.

Kliknij symbol w prawym górnym rogu ekranu głównego, aby przejść do menu "Instalator".

Ekran główny (model CTC EcoZenith i360).

Instalator

Menu "Instalator" obejmuje cztery podmenu:

- Wyświetlacz
- Ustawienia
- Definiuj
- Serwis

5.3

Definiuj

Więcej informacji na temat możliwych konfiguracji systemu można znaleźć w "Podręczniku instalacji i konserwacji" danego produktu głównego.

Wiersze menu przedstawione na poniższych zrzutach ekranu menu mogą różnić się w zależności od modelu pompy ciepła / produktu sterującego.

5.3.1 Def. Funkcja sterow rozn

Funkcja termostatu różnicowego znajduje zastosowanie na przykład, jeśli chcesz zasilać EcoZenith i255 z pieca z płaszczem wodnym albo innego źródła ciepła.

Funkcja może być również stosowana w obiegu grzewczym z CTC GSi 600 lub CTC EcoZenith i360, na przykład podczas przesyłania ciepła ze zbiornika buforowego (np. CTC EcoTank) do zbiornika ZŹC.

Jednak funkcja termostatu różnicowego nie może być łączona z "Instalacją solarną 2" z CTC EcoTank, ponieważ ta sama pompa obiegowa (G46) jest używana przez obie funkcje.

Funkcja termostat. różn Nie (Tak/Nie)

Wybierz "Tak", jeśli ma być używana funkcja termostatu różnicowego.

Blokada t. różn, zewn. konfig. Brak (NO/NC/Brak)

To menu Definiowaniee tryb zwierny (NO) lub rozwierny (NC) dla zewnętrznego sygnału sterującego w przypadku zdalnego sterowania funkcją.

Przykłady ustawień trybu normalnego można znaleźć w części "Def. zdalnego sterowania" w rozdziale "Instalator\ Definiowanie".

Informacje dotyczące funkcji termostatu (sterowania) różnicowego wyświetlane są w sekcji "Dane pracy".

Menu: "Instalator/".

	OK
	UK
Nie	
Nie	
Nie	
	Nie Nie

Menu: "Instalator/Definiuj".

Menu: "Instalator/Definiuj/Termostat. różn".

5.3.2 Def. Basen

Basen

Nie (Tak/Nie)

Wybierz "Tak", aby podłączyć basen do obiegu grzewczego.

Konfiguracja blokady basenu Brak (Brak/NC/NO)

Ten pasek menu wyświetlany jest wtedy, gdy dla funkcji "Blokada basenu" w menu "Instalator/Ustaw/Zdalne sterow" zdefiniowano "Wejście" dla zdalnego sterowania.

To menu definiuje tryb zwierny (NO) lub rozwierny (NC) dla zewnętrznego sygnału sterującego w przypadku zdalnego sterowania ogrzewaniem basenu.

Więcej informacji na temat zdalnie sterowanych funkcji można znaleźć w "Podręczniku instalacji i konserwacji" produktu głównego.

5.3.3 Def. panel Solar

Więcej informacji na temat możliwych opcji systemowych dla paneli solarnych można znaleźć w rozdziale "Opcje systemowe EnergyFlex".

Zobacz także schematy w rozdziale "Konstrukcja systemu".

Panele solar Nie (Tak/Nie)

Określ, czy korzystasz z paneli solarnych.

Regeneracja d. zródła Nie (Tak/Nie)

Określ, czy "Regeneracja podłoża skalnego" jest aktywna.

Dodatkowe ładowanie Nie (Tak/Nie)

Ta funkcja uaktywnia "Instalację solarną 3".

"Tak" oznacza, że możesz wybrać priorytetowe traktowanie zasilania zbiornika ZŹC/zbiornika H lub objętości X.

EcoTank

Nie (Tak/Nie)

Ta funkcja uaktywnia "Instalację solarną 2" ze zbiornikiem buforowym EcoTank (lub równoważnym).

Panel podłączony do wężownica (wężownica/ wymiennik)

Określ, czy zainstalowano wężownicę słoneczną w EcoTank lub wymiennik pośredni.

5.3.4 Def. CWU

Patrz rozdział "Ustawianie CWU" w "Podręczniku instalacji i konserwacji" produktu głównego.

Menu: "Instalator\Definiuj\Basen".

💌 💌 Def. panel Solar		
Panele solar	Nie	
Regeneracja d. zródła	Nie	
Dodatkowe ładowanie	Nie	
EcoTank	Nie	OK
Panel podlacz do	wężownica	OK

Menu: "Instalator/Definiuj/Panel solar".

Menu: "Instalator/Definiuj/CWU".

5.4 Ustawienia

Ustawienia wymagane do optymalnego funkcjonowania obiegu grzewczego są dokonywane w menu "Ustawienia/".

> Wiersze menu przedstawione na poniższych zrzutach ekranu menu mogą różnić się w zależności od modelu pompy ciepła / produktu sterującego.

5.4.1 Ustawienie, funkcja termostat rozn

Funkcja musi być zdefiniowana przed dokonaniem ustawień (patrz sekcja "Ustaw/Funkcja termostatu różnicowego").

Funkcja termostatu różnicowego jest używana podczas przesyłania ciepła między dwoma zbiornikami systemu; na przykład między zbiornikiem buforowym (CTC EcoTank) a zbiornikiem głównym CTC EcoZenith i255 (zbiornik H) lub zbiornikiem ZŹC w obiegu grzewczym z CTC GSi 600/EcoZenith i360.

Więcej informacji można znaleźć w sekcji "Konstrukcja systemu".

Rozn temp. początek °C

Ustaw różnicę temperatury, przy której rozpocznie się zasilanie ze źródła ciepła. Aby zasilanie się rozpoczęło, źródło ciepła musi być o właśnie tyle stopni cieplejsze od temperatury w zbiorniku.

Rozn temp. zatrzym. ładow. °C 3 (2...20)

Ustaw różnicę temperatury, przy której zasilanie ze źródła ciepła zostanie zakończone. Spadek różnicy temperatury między urządzeniem a zbiornikiem poniżej tego poziomu pociąga za sobą przerwanie zasilania.

Temp ladowania °C

60 (10...80)

7 (3...30)

Ustaw maksymalną dopuszczalną temperaturę w zasilanym zbiorniku. Przekroczenie tego poziomu skutkuje przerwaniem zasilania.

Ładow tank

Nie (Nie/Tak)

Przeładowanie z dolnego zbiornika do zbiornika buforowego rozpoczyna się, gdy:

- Pasek menu ustawień "Ładow tank" = "Tak".
- Aktywna jest opcja "SmartGrid Tani prąd" lub "SmartGrid Przegrzanie" oraz w dolnym zbiorniku ustawiony jest wzrost temperatury za pomocą SmartGrid.
- Pompa ciepła ładuje dolnego zbiornika oraz temperatura w dolnym zbiorniku jest o 5°C wyższa niż poprzednia wartość zadana*, oraz temperatura w zbiorniku buforowym jest o 5°C niższa niż poprzednia wartość zadana*.

Menu: "Instalator/Ustawienia".

💭 Ustaw. funkcji term	ostat. ro 🏠	
Rozn temp. początek °C	7	
Rozn temp. zatrzym. ładow. °C	3	
Temp ladowania °C	60	
Ladow tank	Nie	OK
Blokada termostatu różn	Nie	UK
Blokada termostatu różn harm	0	
		$\mathbf{\vee}$

Menu: "Instalator/Ustawienia/Termostat różnicowy".

*Poprzednia wartość zadana oznacza wartość zadaną przed uaktywnieniem opcji "SmartGrid Tani prąd" lub "SmartGrid Przegrzanie". Przeładowywanie zbiornika buforowego trwa do momentu, gdy:

- Pompa ciepła zatrzymuje ładowanie dolnego zbiornika (konieczność naładowania zbiornika zniknęła).
- Temperatura w dolnym zbiorniku spadła do wartości zadanej.
- Opcja "SmartGrid Tani prąd/Przegrzanie" nie są aktywne.

Blokada termostatu różn Nie (Nie/Tak)

"Jah" tähendab, et funktsiooni saab kaugjuhtimisega aktiveerida.

Blokada termostatu różn harmonogramu

Dostęp do planowania funkcji umożliwia wiersz "Blokada termostatu różn harmonogramu".

5.4.2 Ustawienia Panele solar

5.4.2.1 Podstawowe ustaw solarne

Rozn temp. początek °C

7 (3...30)

Ustaw różnicę temperatur, przy której rozpocznie się zasilanie podłoża skalnego. Aby zasilanie się rozpoczęło, panel słoneczny musi być o właśnie tyle stopni cieplejszy od temperatury w zbiorniku.

Rozn temp. zatrzym. ładow. °C 3 (3...30)

Ustaw różnicę temperatur, przy której rozpocznie się zasilanie przez ogrzewanie solarne. Spadek różnicy temperatury między kolektorem słonecznym a zbiornikiem poniżej tego poziomu skutkuje przerwaniem zasilania.

Pompa ładująca Min Prędkość % 20 (20...100)

Określ minimalną dopuszczalną prędkość pompy zasilającej (G30; G32).

Test czujnika aktywny

Nie (Tak/Nie)

Określ, czy test czujnika słonecznego ma być uaktywniony. Jeśli czujnik kolektora słonecznego nie może być zainstalowany w taki sposób, by rzeczywista temperatura panelu mogła być wykryta, pompa ładowania musi działać przez chwilę, aby ciecz z panelu mogła zadziałać na czujnik.

- Test/przerwa, min 4 (1...20) /30 (80...180)

Test (4): Określ czas trwania testu czujnika, aby trudno dostępne czujniki mogły wykryć prawidłową temperaturę. Długość testu czujnika powinna być jak najkrótsza, aby zapobiec niepotrzebnemu odprowadzaniu ciepła ze zbiornika w sytuacjach, gdy panel słoneczny nie jest ładowany.

Przerwa (30): Czas między testami czujnika jest podany tutaj. Nowy test czujnika rozpocznie się po przerwie.

💭 Ustaw. Panele solar	
Podst ustaw solarne	
Zabezp paneli	
H-zbiornik	
EcoTank	OK
X-pojemn	UK
Podgrzew d. zr	
Ład. H-zbiornik	

Menu: "Instalator/Ustawienia/Panele solar".

Or Podst ustaw s	olarne	
Rozn temp. początek °C	7	
Rozn temp. zatrzym. ła	dov3	
Pompa ładująca Min Pr	ędk20	
Test czuj aktyw	Nie	OK
-Test / Paus, min	4 /30	UK
-Przerwa zima	Nie Lis - Lu	t 💦
Priorytet ladowania	H-zbio	
Przeplyw I/min	6.0	

Menu: "Instalator/Ustawienia/Panele solar/Ustawienia solarne".

-Zimowa przerwa Nie (Tak/Nie) List–Luty

Określ miesiące, w których testy czujników mają być wstrzymane. Zimą, kiedy panel (z reguły) nie może ogrzewać zbiornika, nie ma potrzeby przeprowadzania testów czujników. Test czujnika przeprowadzony o tej porze roku może doprowadzić do tego, że część ciepła zbiornika jest zrzucana do kolektora słonecznego, czego należy unikać.

Priorytetowe ładowanie:

Zbiornik H/zbiornik ZŹC lub objętość X

Określ, czy zbiornik H/zbiornik ZŹC lub objętość X (zbiornik akumulacyjny/basen) powinny być traktowane priorytetowo podczas zasilania (wyświetlone tylko jeśli zdefiniowane jest alternatywne zasilanie).

Opcje (zasilanie ze zbiornika H lub zbiornika ZŹC) zależą od modelu pompy ciepła/modułu wewnętrznego.

Przepływ I/min

6.0 (0,1...50,0)

Określ przepływ obiegający kolektory solarne (odczyt z przepływomierza w jednostce systemowej). Przepływ musi być odczytany, gdy pompa solarna pracuje na 100%.

UWAGA: Przepływ jest używany jako podstawa do obliczania mocy i energii skumulowanej. Nieprawidłowe przepływy będą zatem powodować niepoprawne wartości w tych parametrach. Pompę można ustawić ręcznie do 100% przepływu w menu "Instalator/Serwis/Test funkcji", aby wykonać odczyt.

5.4.2.2 Zabezpieczenie paneli

W tym miejscu można ustawić funkcje, które chronią panele solarne przed nadmierną temperaturą i ryzykiem zamrożenia.

Zabezp przed przegrz panel

Nie (Tak/Nie)

Włącz funkcję ochrony, aby zabezpieczyć panel solarny przed nadmierną temperaturą. Odbywa się to poprzez chłodzenie panelu słonecznego.

-max. temp. panel °C

120 (-100...150)

Określ maksymalną temperaturę, którą może osiągnąć panel; funkcja chłodzenia uruchamia się po jej osiągnięciu. Gdy chłodzenie jest aktywne, ciepło zostaje zrzucone 1) do odwiertu, jeśli ma miejsce doładowanie odwiertu, a 2) następnie do zbiorników do osiągnięcia ich maksymalnej dozwolonej temperatury.

Gdy temperatura w panelu solarnym przekroczy wartość "maks. temp. panel °C", pompa obiegowa uruchomi się, a w menu "Dane pracy" zostanie wyświetlony tekst "chłodzenie panelu".

Gdy temperatura w panelu solarnym spadnie, a temperatura w zbiorniku pozostanie wysoka, pompa obiegowa będzie nadal działała, a w menu "Dane pracy" zostanie wyświetlony tekst "chłodzenie zbiornika". Będzie to kontynuowane do momentu osiągnięcia przez zbiornik 60 °C.

(Temperatura ładowania, ustawienie fabryczne).

Chlodz gdy temp w zb wyzsza Nie (Tak/Nie)

Jeśli energia została przeniesiona do zbiornika w celu schłodzenia panelu, funkcja chłodzenia zbiornika poprzez przekazanie energii do panelu jest aktywowana tutaj. Ma to na celu umożliwić systemowi chłodzenie panelu (np. następnego dnia).

--Zb. schłodz. do temp °C 70 (50...80)

Określ temperaturę, do jakiej ma zostać ochłodzony zbiornik po osiągnięciu wskutek zasilania nadmiernej temperatury.

W takim przypadku w menu "Dane pracy" zostanie wyświetlony komunikat "dodatkowe chłodzenie".

Zabezp przeciwzamar panel Nie (Tak/Nie)

Zimą, przy ekstremalnie niskich temperaturach zewnętrznych istnieje ryzyko zamarzania paneli (pomimo płynu przeciw zamarzaniu). Funkcja przekazania ciepła ze zbiornika do panelu jest aktywowana tutaj.

-Aktywna gdy temp panel °C -25 (-30...-7)

Określ temperaturę w kolektorze solarnym, w której rozpoczyna się ochrona przed zamarzaniem. Gdy czujnik panelu wykazuje temperaturę poniżej granicy ochrony przed zamarzaniem, uruchamia się pompa zasilająca, która pracuje do czasu, gdy temperatura z czujnika wyniesie 2 stopnie powyżej wartości granicznej (histereza 2°C).

🂢 Ustaw. Zabezp paneli		
Zabezp przed przegrz panel	Nie	
-Max temp panel °C	120	
Chlodz gdy temp w zb wyzsza	Nie	
-Zb. schłodz. do temp °C	70	OK
Zabezp przeciwzamar panel	Nie	UK
-Aktyw gdy temp panel °C	-25	
Priorytet zabezp	H-zbio	

Menu: "Instalator/ Ustawienia/Panele solar/ Zabezpieczenie paneli".

Priorytet zabezp

H-Zbiornik/zbiornik ZŹC lub objętość X

Określ zbiornik, który mają zabezpieczać funkcje ochrony.

Dotyczy to wyłącznie sytuacji uaktywnienia objętości X i "Instalacji solarnej 3".

Opcje (zbiornik H lub zbiornik ZŹC) zależą od modelu pompy ciepła/modułu wewnętrznego.

5.4.2.4 Ustawienia zbiornika H/zbiornika ZŹC/ EcoTank/objętości X

Wyświetlany nagłówek menu (Ustawienia zbiornika H lub Ustawienia zbiornika ZŹC) zależy od modelu pompy ciepła/modułu wewnętrznego.

Nagłówek menu "Ustawienia zbiornika H" jest wyświetlany dla "Instalacji solarnej 1–3".

Nagłówek menu "Ustawienia zbiornika ZŹC" jest wyświetlany dla "Instalacji solarnej 2".

Nagłówek menu "Ustawienia EcoTank" może być wyświetlany dla "Instalacji solarnej 2".

Nagłówek menu "Ustawienia objętości X" może być wyświetlany dla "Instalacji solarnej 3".

Temp ladowania °C

60 (10...95)

Ustaw maksymalną dozwoloną temperaturę w zbiorniku ZŹC lub zbiorniku H. Z chwilą osiągnięcia zadanej temperatury ładowanie jest zatrzymywane.

Max temp zbiornika °C

70 (60...125)

Jeśli temperatura panelu solarnego przekroczy wartość "maks. temp panelu °C", zbiornik może być przeciążany przez panel do tej ustawionej temperatury zbiornika.

Wymaga to również uaktywnienia "Zabezpieczenia panelu przed nadmierną temperaturą" (patrz menu "Ustawienia. Funkcje ochrony paneli").

5.4.2.3 Usaw. Regeneracja d. zródła

Aktyw podgrz d zr

Nie (Tak/Nie)

"Tak" uaktywnia funkcję "Regeneracja d. zródła". Funkcja ta jest przeznaczona do ochrony panelu solarnego przed nadmiernymi temperaturami, ale może również zasilać podłoże skalne energią.

--Rozn temp początek °C 60 (3...120)

Ustaw różnicę temperatury, przy której rozpocznie się zasilanie podłoża skalnego. Aby zasilanie się rozpoczęło, panel słoneczny musi być o właśnie tyle stopni cieplejszy od solanki w odwiercie. Jeśli panel ładuje lub może naładować zbiornik, naładowanie zbiornika jest priorytetowe.

--Rozn temp zatrzym. ładow. °C 30 (1...118)

Ustaw różnicę temperatury, przy której zasilanie podłoża skalnego zostanie przerwane. Spadek różnicy temperatury między kolektorem słonecznym a solanką poniżej tego poziomu skutkuje przerwaniem zasilania.

-Max. temp. solanki °C 18 (1...30)

Ustawienie maksymalnej dozwolonej temperatury solanki. Po osiągnięciu tej wartości ustaje zasilanie odwiertu.

Menu: "Instalator/Ustawienia/Panele solar/H-Zbiornik".

💭 Ustaw. Regeneracja	d. źr	
Aktyw podgrz d zr	Nie	
-Rozn temp początek °C	60	
-Rozn temp zatrzym. ładow. °C	30	
Max. temp. solanki °C	18	ОК
		$\mathbf{\vee}$

Menu: "Instalator/Ustawienia/Panele solar/ Regeneracja d. zródła".

5.4.2.5 Ustawienia Ladowanie bufora

Funkcja ta dotyczy warunków zasilania między EcoTank a zbiornikiem głównym (zbiornikiem H) w "Instalacji solarnej 2".

Jednak ta funkcja nie może być łączona z "Funkcją termostatu różnicowego", ponieważ ta sama pompa obiegowa (G46) jest używana przez obie funkcje.

Rozn temp. początek °C

7 (3...30)

Ustaw różnicę temperatury, przy której rozpocznie się zasilanie zbiornika H.

Aby zasilanie się rozpoczęło, EcoTank w "Instalacji solarnej 2" musi być o właśnie tyle stopni cieplejszy od zbiornika H.

Rozn temp. zatrzym. ładow. °C 3 (2...20)

Ustaw różnicę temperatury, przy której zasilanie zbiornika H zostanie przerwane.

Spadek różnicy temperatury między EcoTank a zbiornikiem H poniżej tego poziomu pociąga za sobą przerwanie zasilania.

Temp ladowania °C 60 (10...80)

Ustaw maksymalną dozwoloną temperaturę w zbiorniku H. Z chwilą osiągnięcia zadanej temperatury przenoszenie zostaje przerwane.

Menu: "Instalator/Ustawienia/Panele solar/Ladowanie bufora"

5.4.3 Cyrkul CWU

Określ ustawienia obiegu CWU (CWU zbiorn).

Więcej informacji można znaleźć w rozdziale "Instalator/ Ustawienia/CWU" w "Podręczniku instalacji i konserwacji" produktu głównego.

💭 Ustaw. CWU zbiorn		
Program CWU		
Histereza zb gornego °C	5	
Max czas CWU (min)	30	
Pompa ładująca %	90	OK
SmartGrid Blokada °C	Wył	UK
SmartGrid Tani prąd °C	Wył	
SmartGrid Przegrzanie °C	Wył	
SmartGrid Przegrzanie blok. PC	Nie	
Czas pracy cyrkul CWU (min.)	4	
Cykl pracy cyrkul CWU	15	
Harmonogramu CWU cyrk.		
Czas dodat CWII Zdalne sterow	0.0	

Część menu "Instalator/Ustawienia/CWU".

5.4.4 Ustawienia Basen

Więcej informacji na temat ustawiania programu tygodniowego i zdalnie sterowanych funkcji można znaleźć w "Podręczniku instalacji i konserwacji" produktu głównego.

Basen	Zablokowane	e (Wł/Zablokowane)
Wybierz, czy ogrz "Zablok".	zewanie basenu ma	być "Wł", czy
Basen temp °C		22 (2058)
Ustaw żądaną te	mperaturę basenu.	
Basen hist °C		1.0 (0.25.0)
Określ dozwolon zatrzymania i roz	ą różnicę między te poczęcia w basenie	mperaturą
Basen priorytet	*	Nisk (Nisk/Wysok)
Określ, czy dodat podczas zasilania	:kowe ogrzewanie je a basenu (Wysok).	est dozwolone
Maks. czas Base	n*	20 (1150)
Określ maksyma basenu przed prz	lny czas w minutach zełączeniem zasilan	n dla ogrzewania ia na inny cel.
Pompa ładująca	%*	50 (20100)
Ustaw prędkość	pompy zasilającej (%	%) zasilania basenu.
SmartGrid Bloka	ada °C	Wył (Wył/-150)
Nastawa ogrzew wskazaną w ninie "SmartGrid Bloka	ania basenu jest zm ejszym menu, gdy a ada".	niejszana o wartość ktywna jest opcja
SmartGrid Tani	prąd °C	Wył (Wył, 150)
Ustaw wzrost na:	stawy ogrzewania b	asenu, gdy aktywna

jest funkcja "SmartGrid Tani prad".

SmartGrid Przegrzanie °C Wył (Wył, 1...50)

Ustaw wzrost nastawy ogrzewania basenu, gdy aktywna jest funkcja "SmartGrid Darm energ".

Min RPS*

50 (50 ...100)

Najniższa dozwolona prędkość kompresora podczas ogrzewania basenu. Gdy pompa ciepła przełącza się z dotychczasowego celu na basen, ta prędkość jest stosowana dla ogrzewania basenu. Gdy zapotrzebowanie na energię jest niskie, na przykład w okresie letnim, tutaj można zwiększyć moc ogrzewania basenu.

Max RPS*

50 (50...100)

22 (5...58)

Najwyższa dozwolona prędkość kompresora podczas ogrzewania basenu. Wartość regulowana w zależności od modelu pompy ciepła/modułu wewnętrznego.

Temp min. RPS °C* 22 (5...58)

Ustaw temperaturę basenu stosowaną, gdy kompresor pracuje z "Min. obr/s".

Temp max. RPS °C*

Ustaw temperaturę basenu stosowaną, gdy kompresor pracuje z "Maks. obr/s".

🂢 Ustaw. Basen		
Basen	Zablokow	
Basen temp °C	22	
Basen hist °C	1.0	
Basen priorytet	Nisk	OK
Max czas Basen	20	UK
Pompa ładująca %	50	
SmartGrid Blokada °C	Wył	\mathbf{V}
SmartGrid Tani prąd °C	1	
SmartGrid Przegrzanie °C	2	
Min RPS	50	
Max RPS	50	
Temp. min RPS °C	22	
Temp. maks RPS °C	22	
Podgrzewacz min kW	0.0	
Podgrzewacz maks kW	0.0	
Temp Min kW °C	22	
Temp Maks kW °C	22	
Blokada basenu	Nie	
Blok. basenu, Harmonogramu		
ZZC Zawór miesz. Offset	5	

Menu: "Instalator/Ustawienia/Basen".

Więcej informacji na temat ustawiania programu tygodniowego i zdalnie sterowanych funkcji można znaleźć w "Podręczniku instalacji i konserwacji" produktu głównego.

*To, czy wiersz menu jest wyświetlany, zależy od modelu pompy ciepła/modułu wewnętrznego.

Ustawić moc grzałki elektrycznej stosowaną dla "Min. kW" (P1).

Wartość regulowana w zależności od modelu pompy ciepła/modułu wewnętrznego.

Grzałka elektr., Maks. kW* 0.0

Ustawić moc grzałki elektrycznej stosowaną dla "Maks. kW" (P2).

Wartość regulowana w zależności od modelu pompy ciepła/modułu wewnętrznego.

Temp. Min. kW °C*

22 (5...58)

Set pool temperature (T1) that applies to "Min. kW" (P1).

Temp. Maks. kW °C*

Set pool temperature (T1) that applies to "Maks. kW" (P2).

22 (5...58)

5

Blokada basenu Nie (Nie/Tak)

Ta funkcja służy do blokowania zewnętrznego ogrzewania basenu.

Blok. basenu, Harmonogramu

To menu służy do planowania okresów w ciągu dni powszednich, podczas których powinno być zablokowane ogrzewanie basenu. Plan ten jest powtarzany w każdym tygodniu.

Ten pasek menu jest wyświetlany, jeśli w menu zdalnego sterowania został zdefiniowany dla funkcji "Blokada basenu" program tygodniowy.

ZZC Zawór miesz. Offset

Ustaw różnicę temperatury, przy której rozpocznie się zasilanie ze źródła ciepła (zbiornika ZŹC). Aby zasilanie się rozpoczęło, źródło ciepła musi być o właśnie tyle stopni cieplejsze od temperatury w zbiorniku.

Schemat pokazuje, że moc grzałki elektrycznej jest regulowana w zależności od temperatury basenu.

Gdy temperatura basenu jest niższa niż T2, moc grzałki elektrycznej jest zwiększana do P2.

Gdy temperatura basenu przekracza T1, moc grzałki elektrycznej jest obniżana do P1.

Te ograniczenia temperatury i mocy są ustawione w menu z lewej strony.

5.5 Dane pracy

Menu danych pracy dla funkcji dodanych za pomocą karty rozszerzeń EnergyFlex są opisane poniżej. Wartości pracy określone w zrzutach ekranu menu są tylko przykładami.

> Pompy i zbiorniki wyświetlone w menu różnią się w zależności od modelu pompy ciepła/modułu wewnętrznego.

5.5.1 Panele solarne

Aby wyświetlić bieżące dane operacyjne, kliknij symbol "Panele solarne" na przewijanej liście u dołu strony menu "Dane pracy".

Pompy i zbiorniki wyświetlone w menu różnią się w zależności od modelu pompy ciepła/modułu wewnętrznego.

Status

Pokazuje stan pracy sterowania solarnego, patrz wyjaśnienie w poniższej tabeli.

Panel solar wlot./wylot. °C 65/70

Pokazana temperatura na wlocie i wylocie panelu słonecznego.

H-Zbiornik (B6) °C

58

Pokazuje aktualną temperaturę w zbiorniku H lub zbiorniku ZŹC w zależności od wybranej instalacji solarnej.

EcoTank (B41)(B42) °C

72/48

72/48

78

69

W/ł

Wł.

Pokazuje temperaturę w górnej części EcoTank (czujnik B41), nastawę i temperaturę w dolnej części zbiornika (czujnik B42).

X-pojemn (B41) (B42) °C

Pokazuje temperaturę w górnej części objętości X (czujnik B41), nastawę i temperaturę w dolnej części zbiornika (czujnik B42).

Pompa panel %

Pokazuje prędkość pompy zasilającej panelu solarnego.

Pompa wymiennika (G32) %

Jeżeli używany jest pośredni wymiennik ciepła, tutaj pokazana jest prędkość pompy zasilającej między pośrednim wymiennikiem ciepła.

Pompa (G46)

Pokazuje, czy pompa zasilająca działa podczas przesyłania zbiornika ZŹC.

Pompa zb glow (G46)

Pokazuje, czy pompa zasilająca działa podczas przesyłania zbiornika głównego.

Pompa d. zr (G31)

Wł.

Pokazuje, czy pompa zasilająca działa podczas zasilania podłoża skalnego.

Menu: "Dane pracy" .

(przykładowy model CTC EcoZenith i360 z pompą ciepła powietrze/ woda CTC EcoAir).

🔶 Panele solar	ne	
Status	Grzanie Ładowanie zb-H Przeciwzam pane	÷.
	Podgrz d zrodla	
Panel solar wlot./wylo	t.65 / 70	
H-zb (B6) °C	58	
EcoTank (B41)(B42) °C	72 / 48	
X-pojemn (B41)(B42) °C	72 / 48	
Pompa panel %	78	
Pompa wymiennika %	69	
Pompa (G46)	Wł.	
Pompa zb glow (G46)	Wł.	
Pompa d. zr (G31)	Wł.	
Zawor reg. (Y31)	Dol zr	
Zawor zbio (Y30)	X-pojemn	
Moc (kW)	1.5	
Wytw energia/24 (kWh)12.3	
Energia wyjsciowa (kW	ł712	

Przykładowe menu "Dane pracy/Panele solar".

Skrót do "Ustawienia/Panele solar".

Zawor reg. (Y31) Podłoże skalne

Wskazuje, czy zasilanie do zbiornika, czy odwiertu.

Zawór zbiornika (Y30)

Objętość X

Kiedy dwa zbiorniki są ładowane energią słoneczną, pokazana jest pozycja 3-drożnego zaworu pomiędzy zbiornikami.

Moc (kW)

1,5

Wyświetla moc wyjściową panelu.

Wytw energia/24 (kWh) 12.3

Pokazuje ilość energii wchłoniętą w ciągu ostatnich 24 godzin. Jeśli energia jest pobierana z zbiorników (np. jeśli panel jest chroniony przed mrozem), oblicza się negatywną energię. Podczas doładowywania odwiertu nie jest obliczana użyteczna energia. Wartość jest aktualizowana na koniec dnia (00:00).

Energia wyjsciowa (kWh)

712

Pokazuje zakumulowaną ilość energii wchłoniętą w kWh.

Wartości ujemne są wyświetlane, jeśli energia jest pobierana ze zbiornika, na przykład podczas testu czujnika i działania funkcji "Ochrona przed zamarzaniem panel".

Wyjście panelu jest wyświetlane podczas doładowania odwiertu, ale energia nie jest sklasyfikowana jako skumulowana.

Status	
Ogrzewanie/brak ogrzewania:	Pokazuje, czy kolektor słoneczny wytwarza ogrzewanie, czy nie.
Zasilanie zbiornik H/zasilanie EcoTank/ zasilanie objętość X/zasilanie podłoża skalnego	Pokazuje, czy jest zasilany jest zbiornik H, EcoTank, objętość X i/lub podłoże skalne.
Wybrany test czujnika	Wyświetla "test czujnika", gdy pompa cyrkulacyjna działa, aby sprawdzić, czy panel słoneczny może się nagrzewać.
Zasilanie podłoża skalnego	Pokazuje, czy pompa obiegowa jest zatrzymana, aby sprawdzić, czy panel solarny może naładować zbiornik.
Panel chłodzenie/zbiornik chłodzenie/zbiornik chłodzenie wstępne/ochrona przed mrozem panel	Wyświetlane po aktywowaniu jakiejkolwiek funkcji ochrony.

43

5.5.2 Dane pracy, Funkcja termostat. rożn

To menu wyświetlane jest wtedy, gdy w menu "Instalator\ Ustaw\Funkcja termostat. rożn" zdefiniowano kocioł na drewno.

Status	Wł.
Wskazuje, czy pompa ładującej jest włączona ("Wł"/ "Wył.").	
Temperatura °C	51

Temperatura w zbiorniku, z którego jest ładowany.

Temp. Cel °C

Temperatura w zbiorniku, do którego jest ładowany.

Menu: "Dane pracy\Funkcja termostat. rożn".

5.5.3 Dane pracy, Basen

Źródła ciepła, które mogą zasilać basen, różnią się w zależności od modelu pompy ciepła/produktu sterującego.

Status

Zablok

Pokazuje aktualny stan pracy ("Wł", "Wył", "Zablok" lub "Zablok zewn").

- "Zablok" oznacza, że ogrzewanie basenu zostało zablokowane w menu "Instalator/Ustawienia/ Basen".
- "Zablok zewn" oznacza, że basen jest zablokowany zewnętrznie za pomocą pilota zdalnego sterowania lub programu tygodniowego.

Basen temp °C

24 (24)

Nie

Nie

Nie

Wył

Pokazuje temperaturę w basenie i nastawę, którą system próbuje osiągnąć.

Zapotrzebowanie — EHS*

Opcja "Tak" oznacza, że ciepło jest potrzebne w basenie i pobierane ze zbiornika EHS.

Zapotrzebowanie – HP*

Opcja "Tak" oznacza, że ciepło jest potrzebne w basenie i pobierane z pompy ciepła.

Zapotrz. Kocioł zewnętrzny*

Opcja "Tak" oznacza, że ciepło jest potrzebne w basenie i pobierane z kotła zewnętrznego.

SmartGrid

Tutaj jest wyświetlany status funkcji SmartGrid dla basenu.

5.5.4 Dane pracy, CWU

Więcej informacji można znaleźć w rozdziale "Dane pracy" w "Podręczniku instalacji i konserwacji" produktu głównego.

CWU cyrkulacja

Wyl

"Wlacz" oznacza, że funkcja "CWU cyrkulacja" jest aktywna.

Menu: "Dane pracy" (przykładowy model CTC EcoZenith i360).

표 Basen		
Status	Wył	
Basen temp °C	24 (24)	
Zapotrz. EHS	Nie	ור
Zapotrz. HP	Nie	
Zapotrz. Kocioł zew	nętr:Nie	
SmartGrid	Wył	
Menu "Dane pracy\Bas	sen".	

Cwu		
Tryb CWU zbiorn °C CWU °C	Komfort 45 / 55 (55) 45 (50)	₽
Wydajność Dodatkowa CWU	50% Wł.	
CWU cyrkulacja	Wył	
SmartGrid	Wył	

Menu "Dane pracy/CWU".

*To, czy wiersz menu jest wyświetlany, zależy od modelu pompy ciepła/modułu wewnętrznego i konfiguracji.

5.6 Serwis

To menu jest przeznaczone wyłącznie dla instalatora i serwisanta.

Zbiorniki, które można zdefiniować, różnią się w zależności od modelu pompy ciepła/ produktu sterującego.

5.6.1 Test funkcji

To menu służy do testowania funkcji poszczególnych komponentów produktu. Po aktywowaniu menu wszystkie funkcje produktu zostają zatrzymane. Każdy składnik może być następnie badane osobno lub razem. Czujniki są sprawdzane w celu upewnienia się, że są podłączone i wyświetlają miarodajną temperaturę.

Z chwilą opuszczenia tego ekranu produkt powraca do normalnej pracy. Jeśli żaden przycisk nie zostanie naciśnięty przez 10 minut, urządzenie automatycznie powróci do normalnego działania.

Menu: "Instalator/Serwis" (EZ i360).

6
OK
UK
\checkmark

Menu: "Instalator\Serwis\Test funkcji".

🗡 Test Solar		
Pompa paneli sol (G30)	0%	
Pompa wymiennika (G32)	0%	
Dol. Zr (Y31/G31)	Zbio	
Zaw 2 zb (Y30)	ZZC zbiornik	
Pompa (G46)	Wył	ОК
Temperatury		
		$\mathbf{\mathbf{v}}$

Menu: "Instalator/Serwis/Test funkcji/Solar".

5.6.1.1 Test Solar

Pompa paneli sol (G30) 0...100%

Test działania pompy obiegowej do panelu solarnego.

Pompa wymiennika (G32)

Test działania pompy cyrkulacyjnej do wymiennika pośredniego.

Dol Zr (Y31/G31)

1) Zbiornik/podłoże skalne

Test działania 3-drożnego zaworu i pompy cyrkulacyjnej do ładowania odwiertu. Po wybraniu opcji "Podłoże skalne" przepływ zostanie skierowany do podłoża skalnego i uruchomiona zostanie pompa obiegowa (G31).

Po wybraniu opcji "Zbiornik" (G31) powinien zostać zamknięty.

Zawór 2 zbiorniki (Y30) Objętość X/zbiornik H/ ZŹC zbiornik

Test działania zaworu 3-drogowego między zbiornikami.

Zbiorniki, które można zdefiniować, różnią się w zależności od modelu pompy ciepła/produktu sterującego.

Pompa (G46)

Wył/wł

0...100%

Test działania pompy cyrkulacyjnej do przeniesienia między zbiornikami.

Temperatury

Wyświetla aktualne temperatury.

5.6.1.2 Test funkcja termostatu różnicowego

Wyświetlane wiersze menu zależą od modelu pompy ciepła/modułu wewnętrznego i konfiguracji.

Pompa (G46) Wlacz/Wyl

Test działania pompy zasilającej zbiornika ZŹC.

Pompa zb glow (G46) Wlacz/Wyl

Test działania pompy zasilającej zbiornika H.

Zawór mieszający (Y41)Otwarty/ZamkniętyTest działania zaworu mieszającego zbiornika ZŹC.

Zawór mieszający (Y42) Otwarty/Zamknięty

Test działania zaworu mieszającego kotła zewnętrznego.

Kocioł zewnętrzny °C Wlacz/Wyl

Test działania kotła zewnętrznego.

Temperatury

ZŹC Zbiornik °C (B47)

Pokazuje wartość temperatury wskazywaną przez czujnik w zbiorniku ZŹC.

H-Zbiornik °C (B6)

Pokazuje wartość temperatury wskazywaną przez czujnik w zbiorniku H.

Termostat różnicowy °C (B46)

Pokazuje wartość temperatury wskazywanej przez czujnik zbiornika termostatu różnicowego.

Kocioł zewnętrzny °C (B9)

Pokazuje wartość temperatury wskazywaną przez czujnik w kotle zewnętrznym.

5.6.1.3 Test basenu

Basen pompa/Zawór (G51)/(Y50)	Wył
Test działania pompy basenu i zaworu 3-drogow	/ego.
Basen pompa (G50, G51)	Wył
Test działania pomp basenu.	
Temperatury	
Basen (B50)	21°C
Pokazuje temperaturę basenu.	

5.6.1.4 Test CWU

Więcej informacji można znaleźć w rozdziale "Instalator/ Ustawienia/Test działania" w "Podręczniku instalacji i konserwacji" produktu głównego.

Wył/wł

CWU pompa cyrkul (G40)

Test działania pompy obiegowej CWU.

X Funkcja termosta	t. rożn	
Pompa (G46)	Wył	
Pompa zb glow (G46)	Wył	
Zawór mieszający (Y41)	Zamk	
Zawór mieszający (Y42)	Zamk	01/
Kocioł zewnętrzny	Wył	UK
Temperatury		
ZZC zbiornik (B47) °C	0°C	$\mathbf{\mathbf{v}}$
H-zb (B6)	57°C	
Termostat rożn. °C (B46)	58°C	
Kocioł zewnętrzny °C (B9)	0°C	

Menu: "Instalator/Serwis/Test funkcji/Termostat różnicowy".

X Test funkcji basenu		
Basen pompa/Zawor(G51/Y50)	Wył	
Basen pompa (G50/G51)	Wył	
Temperatury		
Basen (B50)	21°C	ок

Menu: "Instalator/Serwis/Test funkcji/Basen".

🗡 Test CWU		
Pompa CWU (G5)	0%	
CWU pompa cyrkul (G40)	Wył	
Sensor		
CWU °C (B25)	0°C	OK
Czujnik przeplywu (B102)	Wył	UK

Menu: "Instalator/Serwis/Test funkcji/CWU".

5.7 Komunikaty alarmowe i rozwiązywanie problemów i środki zaradcze

Wykrycie błędu, na przykład przez czujnik, skutkuje wyzwoleniem alarmu. Na ekranie pojawia się wtedy komunikat zawiadamiający o błędzie.

Aby skasować alarm, naciśnij widniejący na ekranie przycisk "Reset alarmu". W razie wyzwolenia szeregu alarmów, są one wyświetlane jeden po drugim. Uporczywy błąd należy najpierw usunąć przed zresetowaniem. Niektóre alarmy są kasowane automatycznie w następstwie zaniku błędu.

W przypadku kolektorów solarnych ważne jest odpowietrzenie systemu. Nie można jednak odpowietrzać gorącego kolektora solarnego. System kolektora solarnego jest odpowietrzany, gdy jest zimno, np. rano.

UWAGA: Jeśli karta rozszerzeń nie została zainstalowana, a zdefiniowano kolektory słoneczne, urządzenie generuje alarm o następującej treści:

Błąd komunikacji karty rozszerzeń.

Komunikaty alarmowe	Opis
Czujnik	Alarm jest wyświetlany w razie błędu polegającego na niepodłączeniu lub zwarciu czujnika albo wykryciu przez czujnik wartości spoza jego zakresu pomiarowego. Czujnik, którego dotyczy problem, jest wskazany na wyświetlaczu. Jeśli czujnik solarny lub czujnik zbiornika jest uszkodzony, zasilanie zatrzymuje się. Działanie: Sprawdź połączenie przewodu lub czujnik; wymień uszkodzony czujnik.
[E133] Ryzyko zamarzania panelu	Gdy temperatura panelu jest o 3°C niższa niż temperatura ochrony przed zamarzaniem.
	Działanie: Sprawdź, czy funkcja ochrony "Ochrona przed mrozem panel" jest uaktywniona. (Menu: Funkcje ochrony paneli).
[E130] Panel/pompa wymiennika	Gdy temperatura panelu jest o 60°C wyższa niż temperatura zbiornika. Pompa obiegowa do panelu solarnego i/lub zbiornika nie jest w stanie przenieść energii do zbiornika.
	Działanie: Sprawdź działanie pomp.
[E132] Pompa panelu	Temperatura panelu jest o 60°C wyższa niż temperatura zbiornika. Pompa obiegowa do panelu solarnego nie jest w stanie przenieść energii do zbiornika.
	Działanie: Sprawdź działanie pompy.
[E131] Przegrzany panel	Temperatura panelu przekracza 160°C.
	Działanie: Sprawdź, czy funkcje ochrony "Ochrona przed nadmierną temperaturą panel" i
	"Chłodzenie nadmierna temperatura" są uaktywnione. (Menu: Funkcje ochrony paneli).
Błąd komunikacji karty rozszerzeń	Miganie alarmu "Błąd komunikacji karty rozszerzeń" oznacza, że komunikacja między kartą graficzną a kartą rozszerzeń nie działa.
	Działanie: Sprawdź połączenie między kartami.

стс

CTC AB Box 309 SE-341 26 Ljungby info@ctc.se +46 372 88 000 www.ctc.se